Polynomials of binomial type and compound Poisson processes
نویسندگان
چکیده
منابع مشابه
Poisson processes , ordinary and compound
The Poisson process is a stochastic counting process that arises naturally in a large variety of daily-life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the compound Poisson process.
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملON MODALITY AND DIVISIBILITY OF POISSON AND BINOMIAL MIXTURES
Some structural aspects of mixtures, in general, have been previously investigated by the author in [I] and [2]. The aim of this article is to investigate some important structural properties of the special cases of Poisson and binomial mixtures in detail. Some necessary and sufficient conditions are arrived at for different modality and divisibility properties of a Poisson mixture based o...
متن کاملAlternative Forms of Compound Fractional Poisson Processes
and Applied Analysis 3 where the first term refers to the probability mass concentrated in the origin, δ y denotes the Dirac delta function, and fYβ denotes the density of the absolutely continuous component. The function gYβ given in 1.5 satisfies the following fractional master equation, that is, ∂ ∂tβ gYβ ( y, t ) −λgYβ ( y, t ) λ ∫ ∞ −∞ gYβ ( y − x, t ) fX x dx, 1.6 where ∂/∂t is the Caputo...
متن کاملCornish-fisher Expansions for Poisson and Negative Binomial Processes
Negative binomial and Poisson processes {X(t), t ≥ 0} have cumulants proportional to the rate λ. So, formal Cornish-Fisher expansions in powers of λ−1/2 are available for their cumulative distribution function and quantiles. If T is an independent random variable with cumulants proportional to γ then the cumulants of X(T ) are proportional to γ; so, CornishFisher expansions in powers of γ−1/2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1988
ISSN: 0022-247X
DOI: 10.1016/0022-247x(88)90325-3